

Effect of Residual Diammonium Hydrogen Phosphate Content on Properties of Natural Rubber Centrifuged Latex

<u>M.W.H.N.M. Siriwardhana</u>^{1*}, A. Attanayake², E.A.L. Lochana² and A.M.W.K. Senevirathna²

¹Department of Export Agriculture, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla, Sri Lanka ²Department of Raw Rubber and Chemical Analysis, Rubber Research Institute of Sri Lanka, Telawala Road, Ratmalana, Sri Lanka *Corresponding Author Email: urashasiriwardhana@gmail.com, TP: +94702765858

Natural rubber particle, a polyisoprene core is surrounded by a shell of non-rubber components, proteins and phospholipids. Natural PO_4^{3} are added to ammonia preserved latex due to the hydrolysis of phospholipid layer around the rubber particle. Although this process contributes to the stability of the latex this could produce a waste sludge; a precipitate of magnesium with phosphate. In centrifuged latex (CL) manufacturing process PO_4^{3-} are added as diammonium hydrogen phosphate (DAHP) before centrifugation in order to remove residual Mg^{2+} present in field latex to the level of 80-100 ppm. In most cases, added DAHP will leave excess PO_4^{3-} in latex as most manufacturers added it without estimating the remaining Mg^{2+} present in latex. It results in a high amount of PO_4^{3-} in latex as a considerable amount of PO_4^{3-} are released from the natural process of hydrolysis with storage time. This study aimed to determine the variation of residual PO_4^{3-} content of CL with storage time and its ultimate effect on latex property development. A series of centrifuged latex samples were prepared by adding 0 g (control sample), 3 g, 6 g, 9 g, 12 g, and 15 g of 15% DAHP. Changes of the latex characteristics such as mechanical (MST) and chemical stability time (CST), PO_4^{3-} and Mg^{2+} concentration, viscosity were determined with time. All the testing were carried out according to ISO procedures. High ammonia preserved CL showed a considerable amount of natural PO43- of about 300-200 ppm with storage time. The PO_4^{3-} content of latex is not a stable amount and showed several fluctuations with time due to several chemical reactions within the latex sample. The excess amount of PO_4^{3-} in the latex leads to a decrease in viscosity and stability of latex due to colloidal destabilization. The control sample showed the highest MST (315 seconds) and CST (97 seconds) with storage time than other samples revealing that there is no need for the addition of DAHP if the Mg^{2+} content of field latex is below 100 ppm in manufacturing CL.

Keywords: Latex; Diammonium; Phosphate; Magnesium; Destabilization; Colloidal