Synthesis of FeCl₃-Graphite Composite from Vein Graphite via Solvothermal Method for Lithium-Ion Rechargeable Battery Applications

U.G.K.L.K.S. Ranasinghe¹,², J.N. Kanagaratnam², T.H.N.G. Amaraweera¹ and H.W.M A.C. Wijayasinghe²

¹Department of Science and Technology, Uva Wellassa University, Badulla, Sri Lanka
²National Institute of Fundamental Studies, Kandy, Sri Lanka

Natural vein graphite is a good crystalline material with high natural purity and is used for advanced applications. Natural vein graphite has been identified as a cost effective source to produce anode material in Lithium-ion Rechargeable Batteries (LIBs). However, the electrochemical performance of anode material prepared from vein graphite has to improve further for practical LIB applications. This study focuses on synthesizing Ferric Chloride-Graphite Intercalation Compound (FeCl₃-GIC) via solvothermal method to enhance the Li-ion intercalation. Anhydrous Ferric chloride was used as an intercalant into graphite layers via solvothermal method at 400 °C for 12 hours by using 50 mL autoclave. The X-Ray Diffraction patterns show the characteristic behavior of the graphite intercalation compound. Moreover, weaker peaks corresponding to the Fe₂O₃ and FeCl₃ could also be observed in the XRD pattern indicating the existence of secondary minor phases of Fe₂O₃ and FeCl₃ in the GICs. Scanning Electron Microscopy images evidenced for the smooth surface morphology of graphite particles after the treatment. Half-cells were assembled using the electrode fabricated from the synthesized material and Li counter electrode in an argon-filled glovebox. It shows a high specific capacity of 378 mA h g⁻¹, which is little higher than the theoretical capacity (372 mA h g⁻¹ for LiC₆) during its first discharge. However, there is a high capacity loss after 25 cycles. The fading nature of this assembled battery could be due to the detrimental effect of Fe₂O₃ and unreacted FeCl₃. This could be minimized by carrying out the solvothermal treatment in a vacuum environment by eliminating the O₂ present inside the autoclave chamber. By doing this, the formation of Fe₂O₃ could be minimized and as the chamber pressure increases, the ability of FeCl₃ molecules to be intercalated into the graphite layers could be enhanced.

Keywords: Vein graphite, Solvothermal process, FeCl₃-GIC, Lithium-ion rechargeable battery