Uva Wellassa University of Sri Lanka Faculty of Science and Technology Department of Science and Technology 400 level 1st Semester Examination - June/July 2017 SCT 467-2 Computer Aided Design & Manufacturing | а. | Compare the terms CAD, CAM & CIA. | (05 marks) | |----|--|---| | b. | | (04 marks) | | c. | Draw a diagram of a product life cycle and discuss its major stages, and discuss point manufacturer should need to think about changing their products. | s at which
(08 marks) | | | | (OB IIIai K3) | | d. | | (08 marks) | | | | | | a. | | (05 marks) | | b. | Write the G-code program for the following part shown in figure 01 considering given below. | the points | | | | (20 marks) | | | a. Use the given points as the part coordinate zero point b. Thickness of the part is 5 mm and you have given 5 mm metal sheet to cut c. Only one run is needed to cut a line d. Use absolute coordinate system e. Use 8 mm end mill cutter f. Refer G-Codes in the end of the exam paper | t the part | | | b.
c.
d. | b. State four elements of CIM system. c. Draw a diagram of a product life cycle and discuss its major stages, and discus point manufacturer should need to think about changing their products. d. Differentiate between sequential engineering and concurrent engineering. a. State steps of engineering design process. b. Write the G-code program for the following part shown in figure 01 considering given below. a. Use the given points as the part coordinate zero point b. Thickness of the part is 5 mm and you have given 5 mm metal sheet to cut c. Only one run is needed to cut a line d. Use absolute coordinate system | Figure 01 3. Design appropriate CNC machining operation sequence for the given "Solidwork" part in figure 02 named "Ex2017" using "SolidCAM". Define rectangular stock material of 5 mm from all side. Use appropriate part coordinate systems. The part file will be available in your common folder. (50 marks) Figure 02 - G00 Positioning at rapid speed; Mill and Lathe - G01 Linear interpolation (machining a straight line); Mill and Lathe - G02 Circular interpolation clockwise (machining arcs); Mill and Lathe - G03 Circular interpolation, counter clockwise; Mill and Lathe - G04 Mill and Lathe, Dwell - G09 Mill and Lathe, Exact stop - G10 Setting offsets in the program; Mill and Lathe - G12 Circular pocket milling, clockwise; Mill - G13 Circular pocket milling, counterclockwise; Mill - G17 X-Y plane for arc machining; Mill and Lathe with live tooling - G18 Z-X plane for arc machining; Mill and Lathe with live tooling - G19 Z-Y plane for arc machining; Mill and Lathe with live tooling - G20 Inch units; Mill and Lathe - G21 Metric units; Mill and Lathe - G27 Reference return check; Mill and Lathe - G28 Automatic return through reference point; Mill and Lathe - G29 Move to location through reference point; Mill and Lathe (slightly different for each machine) - G31 Skip function; Mill and Lathe - G32 Thread cutting; Lathe - G33 Thread cutting; Mill - G40 Cancel diameter offset; Mill. Cancel tool nose offset; Lathe - G41 Cutter compensation left; Mill. Tool nose radius compensation left; Lathe - G42 Cutter compensation right; Mill. Tool nose radius compensation right; Lathe - G43 Tool length compensation; Mill - G44 Tool length compensation cancel; Mill (sometimes G49) - G50 Set coordinate system and maximum RPM; Lathe - G52 Local coordinate system setting; Mill and Lathe - G53 Machine coordinate system setting; Mill and Lathe - G54~G59 Workpiece coordinate system settings #1 t0 #6; Mill and Lathe - G61 Exact stop check; Mill and Lathe - G65 Custom macro call; Mill and Lathe - G70 Finish cycle; Lathe - G71 Rough turning cycle; Lathe - G72 Rough facing cycle; Lathe - G73 Irregular rough turning cycle; Lathe - G73 Chip break drilling cycle; Mill - G74 Left hand tapping; Mill - G74 Face grooving or chip break drilling; Lathe - G75 OD groove pecking; Lathe - G76 Fine boring cycle: Mill - G76 Threading cycle; Lathe - G80 Cancel cycles; Mill and Lathe - G81 Drill cycle; Mill and Lathe - G82 Drill cycle with dwell: Mill - G83 Peck drilling cycle; Mill - G84 Tapping cycle; Mill and Lathe - G85 Bore in, bore out; Mill and Lathe - G86 Bore in, rapid out; Mill and Lathe - G87 Back boring cycle; Mill - G90 Absolute programming G91 - Incremental programming G92 - Reposition origin point; Mill G92 - Thread cutting cycle; Lathe G94 - Per minute feed; Mill G95 - Per revolution feed; Mill G96 - Constant surface speed control; Lathe G97 - Constant surface speed cancel G98 - Per minute feed; Lathe G99 - Per revolution feed; Lathe ## **CNC M Codes** M00 - Program stop; Mill and Lathe M01 - Optional program stop; Lathe and Mill M02 - Program end; Lathe and Mill M03 - Spindle on clockwise; Lathe and Mill M04 - Spindle on counterclockwise; Lathe and Mill M05 - Spindle off; Lathe and Mill M06 - Toolchange; Mill M08 - Coolant on; Lathe and Mill M09 - Coolant off: Lathe and Mill M10 - Chuck or rotary table clamp; Lathe and Mill M11 - Chuck or rotary table clamp off; Lathe and Mill M19 - Orient spindle; Lathe and Mill M30 - Program end, return to start; Lathe and Mill M97 - Local sub-routine call; Lathe and Mill M98 - Sub-program call; Lathe and Mill M99 - End of sub program; Lathe and Mill Α A-axis command (usually a rotary) B-axis command (usually a rotary) C C-axis command (usually a rotary) D Tool diameter/radius compensation number F Feedrate value В L Ν P Т Ϋ́ G CNC function or code Н Tool length compensation number Circle center distance for X J Circle center distance for Y K Circle center distance for Z or circle radius (G12/G13) Loop count for subroutine/macro М Machine function or code Block sequence number Macro programming variable Q Subroutine program number to call R Rotation or scaling factor S Spindle speed (RPM) Tool number or turret position X-axis command (usually a linear) Y-axis command (usually a linear) Z-axis command (usually a linear)